top of page

Introducing our comprehensive 12-Week Life Planner, designed to empower you in achieving your goals, fostering self-care, and maintaining a healthy lifestyle. This planner is thoughtfully crafted to bring structure and balance to your life, offering various features to help you stay organized and prioritize your well-being.

New Article about HFOs Detection and Classification

Sciaraffa, N., Klados, M. A., Borghini, G., Flumeri, G. Di, Babiloni, F., & Aricò, P. (2020). Double-Step Machine Learning Based Procedure for HFOs Detection and Classification. Brain Sciences 2020, Vol. 10, Page 220, 10(4), 220.


The need for automatic detection and classification of high-frequency oscillations (HFOs) as biomarkers of the epileptogenic tissue is strongly felt in the clinical field. In this context, the employment of artificial intelligence methods could be the missing piece to achieve this goal. This work proposed a double-step procedure based on machine learning algorithms and tested it on an intracranial electroencephalogram (iEEG) dataset available online. The first step aimed to define the optimal length for signal segmentation, allowing for an optimal discrimination of segments with HFO relative to those without. In this case, binary classifiers have been tested on a set of energy features. The second step aimed to classify these segments into ripples, fast ripples and fast ripples occurring during ripples. Results suggest that LDA applied to 10 ms segmentation could provide the highest sensitivity (0.874) and 0.776 specificity for the discrimination of HFOs from no-HFO segments. Regarding the three-class classification, non-linear methods provided the highest values (around 90%) in terms of specificity and sensitivity, significantly different to the other three employed algorithms. Therefore, this machine-learning-based procedure could help clinicians to automatically reduce the quantity of irrelevant data.

37 views0 comments


Rated 0 out of 5 stars.
No ratings yet

Add a rating
bottom of page