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During the last years, it has been established that the prefrontal and posterior parietal
brain lobes, which are mostly related to intelligence, havemany connections to
cerebellum. However, there is a limited research investigating cerebellum's relationship
with cognitive processes. In this study, the network of cerebellum was analyzed in order
to investigate its overall organization in individuals with low and high �uid Intelligence
Quotient (IQ). Functional magnetic resonance imaging (fMRI) data were selected from
136 subjects in resting-state from the Human Connectome Project (HCP) database
and were further separated into two IQ groups composed of 69 low-IQ and 67 high-
IQ subjects. Cerebellum was parcellated into 28 lobules/ROIs (per subject) using a
standard cerebellum anatomical atlas. Thereafter, correlation matrices were constructed
by computing Pearson's correlation coef�cients between the average BOLD time-series
for each pair of ROIs inside the cerebellum. By computing conventional graph metrics,
small-world network properties were veri�ed using the weighted clustering coef�cient
and the characteristic path length for estimating the trade-off between segregation and
integration. In addition, a connectivity metric was computed for extracting the average
cost per network. The concept of the Minimum Spanning Tree (MST) was adopted and
implemented in order to avoid methodological biases in graph comparisons and retain
only the strongest connections per network. Subsequently,six global and three local
metrics were calculated in order to retrieve useful features concerning the characteristics
of each MST. Moreover, the local metrics of degree and betweenness centrality were
used to detect hubs, i.e., nodes with high importance. The computed set of metrics
gave rise to extensive statistical analysis in order to examine differences between low
and high-IQ groups, as well as between all possible gender-based group combinations.
Our results reveal that both male and female networks have small-world properties with
differences in females (especially in higher IQ females) indicative of higher neural ef�ciency
in cerebellum. There is a trend toward the same direction in men, but without signi�cant
differences. Finally, three lobules showed maximum correlation with the median response
time in low-IQ individuals, implying that there is an increased effort dedicated locally by
this population in cognitive tasks.
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INTRODUCTION

During the last decades, many neuroimaging studies have been
performed toward establishing the relationship between brain
volume, connectivity structures and intelligence. It is obvious
now that the human intelligence, which is a general cognitive
mental ability, depends on structural and functional properties
of the brain, as well as on the interaction among di�erent brain
regions (Jung et al., 1999; Duncan et al., 2000; Shaw et al., 2006).
Findings support the importance of prefrontal cortex and regions
of parietal lobes for intelligence (Duncan, 1995; Jung and Haier,
2007; Song et al., 2008; Deary et al., 2010; Ryman et al., 2016).
Gray and white-matter characteristics have been used to study the
correlation between structural �ndings and intellectual abilities
(Mechelli et al., 2005; Hulsho� Pol et al., 2006; Choi et al., 2008;
Malpas et al., 2016), while studies associating anatomical and
functional connectivity with intelligence have been also reported
(Haier et al., 2005; Song et al., 2008; Chiang et al., 2009; Ryman
et al., 2016; Tsvetanov et al., 2016), with indicative biomarkers
involving the total brain volume and the concentration of the
N-acetyl aspartate (McDaniel, 2005; Paul et al., 2016).

The organized network activity at rest could be viewed as
the idle state of the brain functions engaged during di�erent
tasks in cognition, also in�uenced by personalized characteristics
as lifestyle, demographics and psychometric measures including
intelligence (Smith et al., 2015). Recently, functional and
structural networks have been used to study the correlation
between brain organization and intelligence. These studies
revealed important correlations of local and widespread brain
properties related to the cognitive functions and intelligence (Li
et al., 2009; Douw et al., 2011). Global e�ciency of functional
brain networks and rich club organization appear to be important
factors in intelligence (Van den Heuvel et al., 2009; Kim
et al., 2016; Yeo et al., 2016). Moreover, small-world network
organization has also been reported as a relevant feature to
intelligence and neural network e�ciency (Micheloyannis et al.,
2006; Li et al., 2009) with observed di�erences between men
and women (Douw et al., 2011). More di�erences related to
the organization of brain networks across genders have been
identi�ed in default mode network, revealing local as well as
widespread connection e�ects (Allen et al., 2011; Tomasi and
Volkow, 2012; Szalkai et al., 2015).

Prefrontal and posterior parietal brain lobes, which are mostly
related to intelligence (Basten et al., 2015; Ryman et al., 2016),
have many connections to cerebellum (Koziol et al., 2014;
Styliadis et al., 2015). Furthermore, there are many factors
involved in cognitive processes justifying the examinationof
various brain areas in relation to IQ aspects, like the basal ganglia
implicated in cognitive task processing. Even though it is known
that the cerebellum is actively involved in cognitive processes
(Koziol et al., 2014; Styliadis et al., 2015), there is a limited
research investigating its relationship with IQ.

Considering all the above, the driving question of this
study concerns the extent to which the cerebellum is related
to intelligence, in men and women, beyond the cognitive
processes. More speci�cally, we study the network organization
in individual groups of di�erent gender and IQ levels. For this

reason, we constructed functional networks of the cerebellum
using rs-fMRI data from individuals with high and low
intelligence ratings. Then, we computed the corresponding
Minimum Spanning Trees (MSTs) and compared them in order
to identify signi�cant local and widespread di�erences basedon a
variety of global and local network metrics. The MST is a widely
used method that is able to preserve only the most important
connections within a network without introducing threshold-
related bias. As a result, it highlights only those edges that play a
major role in the information transfer within the network. Using
this strategy, our goal is to examine whether the MST topology
can highlight signi�cant di�erences among di�erent IQ groups
in the cerebellum. The fundamental hypothesis of this study is
that the local and global characteristics of the cerebellarnetwork
exhibit signi�cant di�erences which are related to gender and IQ.

MATERIALS AND METHODS

Subjects
Our data was collected from the Human Connectome Project
(HCP) database, an open-source database aiming to provide deep
examination of the human brain connectome (Van Essen et al.,
2013). The HCP is the result of e�orts of co-investigators from
the University of California, Los Angeles, Martinos Center for
Biomedical Imaging at Massachusetts General Hospital (MGH),
Washington University, and the University of Minnesota. The
present study analyzes rs-fMRI data collected from the HCP
database after the HCP S500C MEG2 data release, between the
�rst six quarterly releases (Q1–Q6), with few cases also collected
in Q7 and later. Functional magnetic resonance imaging (fMRI)
data was initially acquired from 492 healthy subjects at rest with
eyes open with relaxed �xation on a projected bright cross-hair
on a dark background (and presented in a darkened room) (Van
Essen et al., 2013). All subjects with psychiatric history, extensive
substance use and hard alcohol history have been removed since
the cerebellum is heavily impacted by alcohol abuse/dependence
(Sullivan et al., 2010) and there is also evidence to suggest that
the cerebellum is impacted by marijuana as well (Block et al.,
2000; Lopez-Larson et al., 2011; Solowij et al., 2011). Moreover,
additional information related to siblings and twins have been
obtained. The population has been restricted to only one member
of a sibling/twin pair so as to overcome shared variance issues.
Fluid IQ scores were obtained per subject prior to scanning.
Finally, subjects were separated based on their �uid IQ scores into
two groups as described in the following section.

IQ Groups Formation
Crystallized intelligence is conceptualized as the product of
experience, both cultural and educational, in interaction with
�uid intelligence, which implies the existence of an intersection
between crystallized and �uid intelligence as far as the
educational experience is (exclusively) concerned (Barch et al.,
2013; Happé, 2013; Schipolowski et al., 2014). The HCP database
provides �uid intelligence measures obtained using a Form-A
of an abbreviated version of the Raven's patterns, developed by
Gur and colleagues (Bilker et al., 2012; Barch et al., 2013). More
speci�cally, participants were presented with patterns made up of
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2 � 2, 3� 3, or 5� 5 arrangements of squares, with one of the
squares missing. Each participant must pick one of �ve response
choices that best �ts the missing square on the pattern. The task
has 24 items and 3 bonus items, arranged in order of increasing
di�culty. However, the task discontinues if the participant makes
5 incorrect responses in a row. Median response times (MRTs)
were also collected per subject in order to study associations with
brain measures.

In this study, IQ score is de�ned as the number of correct
responses per subject. The score distribution was found to be left-
skewed (skewnessD � 0.49), implying that most of the subjects
tend to answer correctly most of the items. In order to de�ne the
low and high-IQ groups, we �rst �nd the median of the IQ score
distribution from all 492 subjects (approximately 16), as well as
the lower quartile (approximately 6). The minimum score is 3
and the maximum score is 24. An IQ score of 3 is considered
very low in practice and since only two subjects responded in
this range, they were removed from further analysis without
a�ecting the overall IQ distribution. We de�ne the low-IQ score
within the interval from 4 to 10 (median minus one quartile),
whereas the upper IQ interval de�nes scores from 22 (median
plus one quartile) to the maximum score of 24. As a result, the
low-IQ group includes 69 subjects, whereas the high-IQ group
is composed of 67 subjects in total. The mid-IQ subjects are
discarded, so that our population of interest consists of 136 well-
separated subjects (69 low-IQ/67 high-IQ). More speci�cally,
there are 25 males and 44 females in the low-IQ group, while 29
males and 38 females are involved in the high-IQ group. As far
as the educational experience is concerned, both the low-IQ and
the high-IQ subjects had an average of approximately 10 years of
educational experience although 12 low-IQ subjects and 8 high-
IQ subjects were still respondent in school for degree courses.
Ages are provided by the HCP database in 4 and 5-year intervals.
Only 1 subject was older than 36 years (in high-IQ group), 26
subjects were between 22 and 25 years old (low/high-IQ; 17/9), 56
subjects were between 26 and 30 years old (low/high-IQ; 24/32)
and �nally 53 subjects were in the age range between 31 and 35
years (low/high-IQ; 28/25). Notice that these age intervals are
not wide enough to support the consideration of age in�uences
to intelligence (Li et al., 2004). It is worth mentioning that our
population of interest consists of young and healthy adults that
underwent several clinical examinations and the large number
of estimated network parameters are satisfactory for subsequent
statistical analyses.

Resting State fMRI Data
Resting-state BOLD fMRI data were obtained through a gradient-
echo EPI sequence from a 3T scanner (91 volumes;TRD 720 ms,
TE D 33.1 ms,FA D 52� , FOVD 208� 180 mm, slice thickness
D 2.0 mm; 2.0 mm isotropic voxels) (Van Essen et al., 2012,
2013). Pre-processed BOLD time-series (15 min duration, 1,200
frames) were acquired from the selected 136 subjects. HCP
Investigators already performed straightforward pre-processing
for de-noising the data using Independent Component Analysis
(ICA) implemented on FSL's MELODIC tool (Beckmann and
Smith, 2004). HCP investigators have also performed basic
preprocessing pipelines. More speci�cally, two MR functional

pipelines were applied (Glasser et al., 2013; Van Essen et al., 2013).
The �rst volume-based pipeline removes spatial distortions,
realigns volumes using FSL's FLIRT-based motion correction,
normalizes the intensity of 4D images to a global mean, registers
data into MNI space and �nally masks the data with the �nal
brain mask derived from FreeSurfer segmentation, while the
second surface-based pipeline aims at transforming the time
series from volume space to CIFTI gray-ordinates standard
space with 2 mm average surface vertex and subcortical volume
spacing. Surface data was smoothed using a 2 mm FWHM kernel
and ICA was used to isolate independent components from
the data. The components were then inserted into the FIX tool
to preserve only information relevant components, which were
used to reconstruct the de-noised signals. Further detailson the
preprocessing pipelines are provided in (Glasser et al., 2013; Van
Essen et al., 2013).

Cerebellum's Anatomical Parcellation
Process
Based on the standard cerebellum anatomical atlas provided by
the Spatially Unbiased Infratentorial Template (SUIT) toolbox
(Diedrichsen et al., 2009; Diedrichsen and Zotow, 2015), the
cerebellum was parcellated into 28 lobules or regions of interest
(ROIs), which are classi�ed as motor related (I–IV, V, VI),
cognitive and emotional related (Crus I, Crus II, VIIb, VIIIa,
VIIIb, IX, X) according toStoodley and Schmahmann (2009),
Stoodley et al. (2012), E et al. (2014), and Koziol et al.
(2014), as shown inFigure 1. In order to avoid in�uences of
intracranial volume di�erences among gender and IQ groups,
all MRI structures were matched to the same model through the
aforementioned parcellation procedure which was based on the
standard (normalized) SUIT anatomical cerebellum atlas. The
volume of each ROI was de�ned as the number of its voxels
and was calculated from the standard SUIT cerebellum atlas
(Diedrichsen et al., 2009; Diedrichsen and Zotow, 2015). As a
result, the size of each ROI is common in all subjects, irrespective
of IQ or gender factors. SUIT's standard cerebellum atlas was
based on the hand-segmentation of 20 healthy young participants
and was already registered on the MNI space (seeDiedrichsen
et al., 2009, for further information). In addition, a �at surface
representation of the cerebellum according toDiedrichsen and
Zotow (2015)is provided inFigure 1, where color coding has
been applied based on each lobule's volumetric size. It is obvious
from Figure 1 that lobule Crus I is the largest one including
almost 23% of the total cerebellar volume, whereas lobule X
is the smallest ROI including almost 1.5% of the total volume.
Vermis Crus I contains less than 0.005% of the total cerebellar
volume and is excluded from further analysis. The anatomical
parcellation of cerebellum was performed for all 136 subjects
separately, in order to extract the average BOLD signals fromthe
remaining 27 ROIs, based on SUIT's standard cerebellum atlas.

Graph Analysis
Weighted—Undirected Graphs
According to Graph Theory, a graphG can be de�ned as a pair
(V,E) whereV is a set of nodes andEis a set of edges (Reijneveld
et al., 2007; Fornito et al., 2013). Weighted and undirected
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FIGURE 1 | Cerebellum parcellation procedure (coronal view , A: front, B: back) followed by its �at surface representation(C). Color coding is based on each
lobule's volumetric size.

graphs were constructed in this study. After the extraction of
the BOLD time-series from cerebellum's parcellation procedure
(Section Cerebellum's Anatomical Parcellation Process),the
average BOLD time-series were computed per ROI and for every
subject separately. Cerebellum's functional connectivitywas then
assessed by computing Pearson's correlation coe�cients between
each pair of the 27 ROIs inside the cerebellum, leading to a 27�
27 correlation (adjacency) matrix per subject in both IQ groups.
Negative correlations were discarded from further analysis(Bohr
et al., 2013). The adjacency matrix is in fact a weighted and
undirected graph with 27 nodes, which are designated as centers
of mass on ROIs, with a maximum number of 351 edges per
graph.

Small-World Network Topology
A small-world network architecture (Watts and Strogatz, 1998)
combines high clustering coe�cient and small characteristic
path-length. In order to examine the small-world properties of
the cerebellum network associated with the IQ groups, we should
compare them to a null model. In order to produce this null
model, a total of 100 random weighted and undirected graphs
(edge and weight preserving) were formed for computingCw

rand
and Lw

rand using Brain Connectivity Toolbox (Rubinov and
Sporns, 2010). In this study, the weighted versions of clustering
coe�cient and characteristic path-length were used in orderto
compute the small-worldness index (Stam et al., 2009; Rubinov
and Sporns, 2010; Otte et al., 2015), as presented inTable 1. In
fact, a small-world network is characterized by higher segregation
(
 w � 1) than a random network and almost equal integration
(� w � 1) with that of a random network and therefore achieves a

small-worldness index larger than 1 (Van den Heuvel et al., 2008,
2009; Stam et al., 2014). This network architecture manages to
achieve e�cient information transfer at low wiring cost.

Minimum Spanning Trees
Toward the characterization of a graph's architecture, it would be
convenient to summarize it with a structure that (i) overcomes
biases introduced by comparing networks with di�erent number
of edges and (ii) eliminates any disconnected syndromes within
the network (for further network-comparison issues seeStam and
van Straaten, 2012; van Diessen et al., 2015). A straightforward
approach that ful�lls these speci�cations operates on the concept
of MSTs, a widespread graph analysis method recently employed
for brain functional-connectivity assessment (Tewarie et al.,
2014, 2015a; Van Diessen et al., 2014; Otte et al., 2015; Van
Dellen et al., 2015; Stam et al., 2016). A spanning tree is a
connected subgraph of the original graph with n-nodes and
exactly n� 1 edges (Stam et al., 2014; Tewarie et al., 2015b).
A MST is a spanning tree that manages to preserve only the
edges that minimize the total cost de�ned as the sum of the
weights of the edges. In our study, MSTs were constructed
using Kruskal's algorithm (Kruskal, 1956). The algorithm begins
with n-disconnected nodes and orders the weights in ascending
order. Afterwards, the edge with the smallest weight is selected
to connect two nodes, unless the selected edge creates a loop.
The above procedure is repeated until a loopless subgraph with
n-nodes and n� 1 edges is constructed. In order to preserve
the strongest connections within the original network, Kruskal's
algorithm is executed so as to minimize the inverse of the total
cost and, thus, retain only edges that maximize the total cost
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TABLE 1 | Network descriptors used in this study.

Symbol Interpretation Mathematical expression Implication

G Graph – Weighted and undirected graph

V Set of vertices – Set of n-nodes

E Set of edges – Set of n*(n� 1)/2 maximum edges

Nleaf Leaf nodes – Number of nodes with degree equal to one

wij Weight – Weight of the edge connecting nodesi and j

twi Number of triangles twi D 1
2

P

j,k2V
(wijwjkwkl)

1=3 Weighted geometric mean of triangles around a node

dw
ij Shortest path - Shortest weighted path between nodesi and j

Cw
i Weighted clustering coef�cient Cw

i D
P

i2G

2twi
ki(ki� 1) Segregation measure that quanti�es the local connectednessof a network

Cw Average weighted clustering coef�cient Cw D 1
n

P

i2G
Cw

i A global version of the weighted clustering coef�cient used for computing � w

Lw Weighted characteristic path length Lw D 1
n

P

i2G,j 6Di

dw
ij

n� 1 Integration measure


 w Gamma 
 w D Cw=Cw
rand Ratio of the weighted clustering coef�cients between original and random networks

� w Lambda � w D Lw=Lw
rand Ratio of weighted path lengths between original and random networks

� w Small-worldness index � w D 
 w=� w Reveals whether a network has an optimal organization or not

conn Connectivity conn D 1
n(n� 1) �

P

wij 2 G

i 6Dj

wi,j Measures the connectedness of a network in terms of network's density, wherepkl is

the number of shortest paths between nodesk and l and pj
kl is the number of

shortest paths betweenk and l that pass through nodej

k Degree ki D
P

j2V
aij Number of neighbors connected to a node (hub metric)

BC Betweenness centrality BCi D
P

k, l2 V

k 6Dl, k 6Di, l 6Di

pi
kl

pkl
Quanti�es the importance of a node (hub metric)

ECC Eccentricity – Indicates whether a node is central or peripheral in a network

d Diameter – Maximum eccentricity

r Radius – Minimum eccentricity

Lf Leaf fraction Lf D Nleaf=n � 1 Fraction of nodes with degree equal to one

Th Tree-hierarchy Th D Nleaf
2(n� 1)BCmax

Quanti�es the balance between diameter reduction and overload prevention

� Kappa or degree divergence � D hk2 i
hki Measure of the broadness of the degree distribution

rdeg Degree correlation – Quanti�es the in�uence of a node's degreeby its neighbors

(Boersma et al., 2013; Tewarie et al., 2015a; Van Dellen et al.,
2015). The result is an acyclic subgraph of the original graph that
manages to preserve only the strongest connections (edges).The
MST provides a graph representation that absorbs population
characteristics into a compact form and facilitates the distinction
of di�erent populations through the computation of various
metrics or descriptors. Recall that such MST comparisons assess
the e�ects of only the strongest connections within the original
network topology and therefore the MST can be suitably used to
examine the IQ's e�ect in cerebellum.

Local and Global MST Descriptors
Three local and six global MST metrics were computed in
order to describe the topological characteristics of each MST
(Stam and van Straaten, 2012; Otte et al., 2015; Tewarie et al.,
2015a). The local MST descriptors are computed per node
and normalized with their corresponding maximum values for
appropriate comparisons. These metrics are summarized in
Table 1. In particular, degree (DEG) is de�ned as the number of
edges connected to a speci�c node, while betweenness centrality
(BC) de�nes the fraction of all shortest paths in the network that
pass through a speci�c node. Consequently, these two metrics can

be used as hub indicators, since they provide useful information
concerning the information �ow within the network. Finally,
eccentricity (ECC) is the longest shortest path from a particular
node to any other node in the network. The global MST
measures are de�ned on the basis of the entire network. Based
on eccentricity's de�nition, diameter (d) is de�ned as the longest
shortest path in the whole network, so that small diameter values
denote better network cohesion, whereas radius (r) is de�ned as
the smallest shortest path in the network. Leaf fraction (Lf ) is
the fraction of leaf nodes in the network. Tree-hierarchy (Th) is
a metric �rst introduced byBoersma et al. (2013)as an optimal
tree con�guration quanti�er. An optimal tree is characterized by
diameter reduction and overload prevention (small BC values),
with the value ofTh approximating 0.5. Kappa (� ) or degree
divergence is mainly related to the synchronization level of tree
nodes. Finally, degree correlation (rdeg) is computed through the
Pearson correlation coe�cient of the degrees of pair of vertices
connected by an edge (Boersma et al., 2013).

Hub(s) Detection
Nodes with high BC and DEG values are characterized as critical
nodes (hubs) and are used to determine the information �ow
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within the network. In order to specify hub nodes for a group
population, we computed the percentage of maximum BC, DEG
values in every ROI, for low/high-IQ males/females.

Statistical Analysis
Small-world properties were investigated for all weighted and
undirected graphs and, afterwards, the corresponding MSTs
were constructed. Subsequently, three local (BC, ECC, DEG)
and six global (diameter, degree correlation, radius, kappa,leaf
fraction, tree hierarchy) metrics were computed in order to
examine the topological and functional characteristics of every
MST. Moreover, several global weighted graph metrics, including
average weighted clustering coe�cient, characteristic path length,
small-worldness and connectivity, were also examined in our
procedure. The feature datasets are non-normally distributed,
in general, so that natural log-transformation was applied in
order to approximate normal distribution properties, with the
addition of a very small constant (1� e� 24) for avoiding zero-
value transforms. Statistical analysis was performed using1-
way unbalanced ANOVA. In total, �ve cases were investigated
in order to test for di�erences between (i) low and high-IQ
groups (low/high-IQ; 69/67), (ii) males in low and high-IQ
groups (low/high-IQ; 25/29), (iii) females in low and high-IQ
groups (low/high-IQ; 44/38), (iv) males and females in low-IQ
group (males/females; 25/44), (v) males and females in high-IQ
group (males/females; 29/38). Allp-values were corrected based
on False Discovery Rate (FDR) using the Benjamini-Hochberg
procedure (Benjamini and Hochberg, 1995) with the signi�cance
level set to 0.05.

RESULTS

Small-World Network Structure
Cerebellum manifests a small-world network structure in both
low and high-IQ populations (low-IQ: 1.2644� 0.1765; high-
IQ: 1.2126� 0.1010), implying that cerebellum network works
e�ciently at low wiring cost for both IQ groups.� he same
evidence stands for males/females comparisons (low-IQ males:
1.2334 � 0.1243; high-IQ males: 1.2287� 0.1243; low-IQ
females: 1.2821� 0.1994; high-IQ females: 1.2002� 0.0783).
Low-IQ subjects tend to have higher average clustering coe�cient
(1.1939� 0.0857) but smaller characteristic path length (0.9548
� 0.0917) than their high-IQ peers (avg. clustering coe�cient:
1.1634� 0.0564; characteristic path length: 0.9640� 0.0689).
Moreover, low-IQ males and females have similar characteristic
path lengths (low-IQ males: 0.9523� 0.0774; low-IQ females:
0.9562� 0.0997) but females have higher average clustering
coe�cient (low-IQ males: 1.1671� 0.0661; low-IQ females:
1.2092� 0.0923). In addition, high-IQ females have higher
average clustering coe�cient than high-IQ males (high-IQ males:
1.1520� 0.0396; high-IQ females: 1.1720� 0.0657), as well as
characteristic path-length (high-IQ males: 0.9454� 0.0878; high-
IQ females: 0.9781� 0.0466). The above results are summarized
on Supplementary Table 1. Statistical analysis results on these
measures as well as on the rest MST measures are presented later
on, in Sections Di�erences between Low and High-IQ Groups
and Di�erences between Low and High-IQ Groups Per Gender.

MSTs in Low and High-IQ Subjects
MSTs were computed for both low and high-IQ subjects, as
described in Section Minimum Spanning Trees. The average
weighted and undirected graphs and the resulting MSTs are
presented inFigure 2 for illustration purposes only, using
BrainNet viewer (Xia et al., 2013). Although the networks in
low and high-IQ populations seem similar, their di�erences
are revealed by the aforementioned metrics that quantify the
network's topological structure. The average DEG, BC, ECC
values for low and high-IQ groups are displayed inFigure 3and
analyzed in more detail inSupplementary Tables 2–4, alongside
with the average MST local metrics for low/high-IQ males and
females.

Hubs
Hub analysis reveals that lobule Left VI is a critical node having
the highest BC value in almost 36% of the low-IQ population
and 49% of the high-IQ population, as well as the highest DEG
value in 41% of the low-IQ population and 52% of the high-
IQ population (Figure 4). Thus, lobule Left VI is responsible
for “tra�c” monitoring in the cerebellum network for both IQ
groups. This Left VI's signi�cance in information transfer is of the
same importance for low and high-IQ subjects, but with a higher
manifestation in the high-IQ population. Moreover, lobules Left
Crus I and Right VI can also be characterized as hubs, but
with a smaller dominance than Left VI. The Left Crus I lobule
activates more in the low-IQ population, as indicated by DEG
and almost equally activated for both groups as indicated by BC.
Alternatively, the Right VI lobule is more active in the high-IQ
population, even though to a smaller extent than other lobules.

These hub indications have also been validated based on sex
for low and high-IQ male/female populations. Region Left VI
is indeed a critical node for all groups, having the highest BC
value in 40% of low-IQ males and 34% of low-IQ females, as
well as the highest DEG value in 48% of low-IQ males and
36% of low-IQ females (Supplementary Figure 1). In the high-
IQ population, Left VI demonstrates the highest BC value in 48%
of high-IQ males and 50% of high-IQ females, as well as the
highest DEG value in 52% of high-IQ males and 53% of high-
IQ females (Supplementary Figure 2). In addition, the Left VI
hub appears stronger in high-IQ females than high-IQ males.
Left Crus I is more activated in low/high-IQ males as indicated
by both BC and DEG measures whereas the opposite stands for
Right VI which appears to be more activated in low/high-IQ
females. In each individual �gure we can compare the size and
the number of nodes that participate in hub analysis. The bar
plots (on the lower panel) and the cerebellar anatomical plots
(on the upper panel) encode the same information but o�er
additional visual interpretation on the cerebellar surface, thus
providing the anatomical location for each hub. These �gures
o�er a clear representation concerning the hub locations for the
di�erent populations of interest.

Correlation between DEG, BC, and Median
Response Times
In order to examine which region interacts the most with
the Median Response Time (MRT), we computed Pearson's
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FIGURE 2 | Average weighted and undirected graphs per IQ grou p (left panel, A : low-IQ and B: high-IQ) and their corresponding MSTs (right panel,C: low-IQ
and D: high-IQ). On the latter representation, each node's size depends linearly on its average BC value.

correlation coe�cients (per subject) between each ROI's DEG,
BC measures (hub indicators) and subjects MRT values by taking
into consideration the IQ factor. Then, the region with the
highest correlation was selected.

Region Left X exhibited the highest positive signi�cant
correlation between DEG and MRT for the low-IQ group (r D
0.42,p D 0.0004) as well as between BC and MRT (r D 0.43,
p D 0.0003). On the other hand, region Vermis VIIIb indicated
the highest positive correlation between DEG and MRT for the
high-IQ group (r D 0.14, p D 0.27) as well as between BC
and MRT (r D 0.19,p D 0.14), without however any statistical
signi�cance at all (Figure 5, Table 2).

The same procedure was repeated for males and females in
both IQ groups. In the male population, Left Crus II exhibited the
highest positive signi�cant correlation between DEG and MRT
for the low-IQ group (r D 0.57,p D 0.0034), whereas region
Left VI was the one for the high-IQ group (r D 0.21,p D 0.29)
but without any signi�cance. Alternatively, the lobule with the
highest positive signi�cant correlation between BC and MRT
was Vermis VIIIb (r D 0.54,p D 0.006) for the low-IQ group
while Right X was selected for the high-IQ group (r D 0.25,p
D 0.2) without again any signi�cance (Supplementary Figure 3,
Table 2). Focusing now on females, region Left X exhibited the
highest positive signi�cant correlation between DEG and MRT
for the low-IQ group (r D 0.47,p D 0.0014). On the other hand,
region Vermis VIIIb was the one with the highest positive (non-
signi�cant) correlation for the high-IQ group (r D 0.23,pD 0.18).
Finally, the region with the highest correlation between BCand

MRT was again Left X (r D 0.46,p D 0.002) for the low-IQ group
and Vermis VIIIb for the high-IQ group (r D 0.2, p D 0.24)
but without any signi�cance (Supplementary Figure 4, Table 2).
In general, all regions that exhibited the highest correlations
between DEG/BC and MRT, in the high-IQ group, were non-
signi�cant.

Differences between Low and High-IQ
Groups
Local MST metrics did not exhibit any signi�cant di�erences
between low and high-IQ groups (not shown). On the other
hand, signi�cant di�erences were found in four global metrics
(Supplementary Table 5). In particular, these di�erences are
re�ected for the metrics of average clustering coe�cient (low-IQ:
1.1939� 0.0857; high-IQ: 1.1634� 0.0564) (F D 5.8769,p D
0.0167), connectivity (low-IQ: 0.1784� 0.0763; high-IQ: 0.2073
� 0.0878) (F D 5.1324,p D 0.0251), diameter (low-IQ: 0.4002�
0.1632; high-IQ: 0.3376� 0.1215) (F D 5.2927,p D 0.0230) and
radius (low-IQ: 0.4101� 0.1641; high-IQ: 0.3540� 0.1400) (F D
4.3788,p D 0.0383).

Differences between Low and High-IQ
Groups Per Gender
Specializing the comparisons per gender population, local MST
metrics did not exhibit any signi�cant di�erences between
low/high-IQ males or females (not shown). In addition, no
signi�cant di�erences were found on any global metrics between
low and high-IQ males (Supplementary Table 6). However,
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FIGURE 3 | Average DEG, BC, ECC values per ROI for both IQ groups on the left panel and the corresponding distributions on the r ight panel. DEG and
BC values tend to have similar distributions since the number of connections that pass through a speci�c node is related with the overloadness within the network and
vice versa. The number of nodes with the highest BC and DEG values (hubs) is small. On the other hand, ECC values exhibit a much more homogeneous diffuse.
Nodes with small eccentricity values are much closer to the center of the network and are characterized by higher BC and DEG values.

signi�cant di�erences were identi�ed between low and high-IQ
females by �ve global metrics (Table 3), speci�cally for average
clustering coe�cient (low-IQ females: 1.2092� 0.0923; high-
IQ females: 1.1720� 0.0657) (F D 4.2866,p D 0.0416), small-
worldness (low-IQ females: 1.2821� 0.1994; high-IQ females:
1.2002� 0.0783) (F D 4.8060,p D 0.0313), connectivity (low-
IQ females: 0.1629� 0.0689; high-IQ females: 0.2014� 0.0856)
(F D 5.8085,p D 0.0182), diameter (low-IQ females: 0.4291�
0.1654; high-IQ: 0.3450� 0.1263) (F D 6.8101,p D 0.0108) and
radius (low-IQ females: 0.4394� 0.1648; high-IQ females: 0.3629
� 0.1510) (F D 5.8233,p D 0.0181).

Four global metrics indicated signi�cant di�erences between
males and females in the low-IQ group (Table 3), speci�cally for
average clustering coe�cient (low-IQ males: 1.1671� 0.0661;

low-IQ females: 1.2092� 0.0923) (F D 4.1227,p D 0.0463),
connectivity (low-IQ males: 0.2058� 0.0822; low-IQ females:
0.1629� 0.0689) (F D 4.7494,p D 0.0328), diameter (low-IQ
males: 0.3493� 0.1491; low-IQ females: 0.4291� 0.1654) (F D
5.1985,p D 0.0258) and radius (low-IQ males: 0.3584� 0.1524;
low-IQ females: 0.4394� 0.1648) (F D 5.3445,p D 0.0239).
Finally, one signi�cant di�erence was found between high-IQ
males and females (Supplementary Table 7) in characteristic
path length (high-IQ males: 0.9454� 0.0878; high-IQ females:
0.9781� 0.046) (F D 4.5376,p D 0.0369).

In summary, all three local MST metrics (DEG, BC, ECC)
did not exhibit any signi�cant di�erences among low/high-IQ
groups as well as between the four possible gender-based group
combinations (low/high-IQ males, low/high-IQ females, low-IQ
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FIGURE 4 | Hub locations on cerebellum for low (green) and high (yellow) IQ groups based on BC (A) and DEG(B). The size of each node depends on the
percentage of low/high-IQ subjects with the highest BC(C) and DEG(D) values.

males/females, high-IQ males/females). On the other hand,
four global metrics (average clustering coe�cient, connectivity,
diameter and radius) revealed signi�cant di�erences between
low and high-IQ groups as well as between low-IQ male and
female populations. The same conclusion stands for low/high-
IQ females, with the addition of the small-world metric as well.
Characteristic path length was the only metric that exhibited
signi�cant di�erence between high-IQ males and females. As
far as the low/high-IQ males are concerned, no signi�cant
di�erences were identi�ed. Our �ndings in men are in a similar
direction with respect to the IQ level, but appear not signi�cant.
Both sexes have the characteristics of small-world networks
with di�erences in females indicative of higher cerebellar neural
e�ciency, especially in higher-IQ females. In relation to the
activities of the lobules, the metrics of DEG, BC, and ECC
showed no di�erences between low and high-IQ individuals, or
between men and women. The ECC values showed a relative
homogeneous di�use distribution, indicative of a rather compact
organization of the activity of the cerebellar lobules.

DISCUSSION AND CONCLUSIONS

To assess the hypothesis that the cerebellar functional networks at
rest di�er between low and high-IQ individuals and/or between

men and women, we employed tools from network theory and
analyzed fMRI networks at rest. The results were indicative of
local and widespread di�erences of the functional organization,
revealing di�erences in the importance of several cerebellar
lobules and widespread network parameters.

The small-world network structure, characterized by high
global and local e�ciency, is a property of anatomical and
functional brain networks. This con�guration maximizes the
e�ciency and minimizes the costs of information processing.
It implies high clustering of nodes (compatible with segregated
or modular processing) and short path length (compatible with
distributed or integrated processing) (Watts and Strogatz, 1998;
Bassett and Bullmore, 2006) and has been extensively reported
in EEG, MEG, Tractography and fMRI studies (Stam, 2004;
Tewarie et al., 2014; Stam et al., 2016). Focusing on cerebellum,
we con�rmed this optimum organization using fMRI at rest
(Supplementary Table 1). In females, small-worldness exhibited
lower values in high-IQ individuals. The higher small-world
organization, with higher clustering coe�cient and lower path
length in low-IQ females, is indicative of a more optimum
functionally organized segregation and integration. In contrast,
in high IQ females, the segregation and integration of the
functional networks at rest can be explained as the idle state
of more e�cient reactivity in cognitive tasks, in accordanceto
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FIGURE 5 | Regions with the maximum correlation between averag e DEG or BC measure and median response times (MRTs) for low and hig h-IQ
groups.

the neural e�ciency hypothesis. The same stands for the male
population but without any signi�cance. The neural e�ciency
hypothesis becomes relevant during brain activations, where
more e�cient individuals show lower brain activation as they
functionally react easier. In agreement to these results, we found
earlier that highly educated individuals showed less prominent
small-world structure than their less educated and lower IQ
counterparts (Micheloyannis et al., 2006).

It is expected that the intrinsic organization of cerebellar
functions at rest follows the functional organization of the
cerebrum so similar co-activation with the brain structures
is expected (Liao et al., 2010; Kelly et al., 2012). Thus,
di�erences between men and women, as well as between
low and high-IQ individuals, which appear intrinsically in
the cerebellar network organization at rest, are expected to
re�ect di�erences in cognitive functions in association with
intelligence. It is interesting that our study supports these
assumptions at a statistically signi�cant level only in women.
There is a trend toward the same direction in men, but without
signi�cant di�erences between low and high-IQ individuals. This
di�erentiation between men and women is indicative of gender
di�erences in cognitive functions which are associated with
intelligence. In addition, the lobules with the highest DEG, BC
values can be related mainly with cognitive functions, where a left

cerebellar dominance is observed. An additional �nding related
to nodes of the cerebellum is that regions Left Crus II, Left X,
and Vermis VIII in low-IQ individuals (both men and women)
showed maximum correlation with the median response time,
implying that these lobules become more important only in low-
IQ individuals (Table 2). It is further known that these lobules are
related to motor and cognitive functions (Koziol et al., 2014).

Additional di�erences between low and high-IQ women were
found in some global parameters (Supplementary Table 7). The
network connectivity was higher in high-IQ women than low-IQ
women, with smaller diameter and radius values (Table 3). These
�ndings show that the network organization in women with
high-IQ at rest is more e�cient. In combination with the �ndings
of small-world organization, it may also signify the expression
of neuronal-network e�ciency in this sub-population. Male
groups exhibit similar trends, but without any signi�cance.The
increased readiness and e�ciency of network organization,as
well as the lower small-worldness in high-IQ females, compared
to low-IQ females and to men counterparts, forms an interesting
�nding of our study. According to the intrinsic cerebellar
connections, these �ndings could be related to the fact that
the cerebellar-cerebral coordination di�ers among individuals,
with known language dominance in women, which is more
e�ective in highly intelligent individuals. At this point, itis
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TABLE 2 | ROI(s) with the maximum correlation coef�cient betwe en MRT and DEG or BC measure for both IQ groups and gender.

Group DEG BC

Maximum correlation coef�cient p ROI Maximum correlation coef�cient p ROI

Low IQ Total 0.42 0.0004 Left X 0.43 0.0003 Left X

Males 0.57 0.0034 Left Crus II 0.54 0.006 Vermis VIIIb

Females 0.47 0.0014 Left X 0.46 0.002 Left X

High IQ Total 0.14 0.27 Vermis VIIIb 0.19 0.14 Vermis VIIIb

Males 0.21 0.29 Left VI 0.25 0.2 Right X

Females 0.23 0.18 Vermis VIIIb 0.2 0.24 Vermis VIIIb

With bold highlight: statistical signi�cant results(p < 0.05).

TABLE 3 | Statistical analysis results per female IQ group and l ow IQ group for the main network metrics.

Metric Low-IQ females High-IQ females F P Low-IQ males Low-IQ females F P

Mean � SD Mean � SD Mean � SD Mean � SD

Cw 1.2092 � 0.0923 1.1720 � 0.0657 4.2866 0.0416 1.1671 � 0.0661 1.2092 � 0.0923 4.1227 0.0463

Lw 0.9562 � 0.0997 0.9781 � 0.0466 2.1312 0.1482 0.9523 � 0.0774 0.9562 � 0.0997 0.0055 0.9412

� w 1.2821 � 0.1994 1.2002 � 0.0783 4.8060 0.0313 1.2334 � 0.1243 1.2821 � 0.1994 0.9492 0.3334

conn 0.1629 � 0.0689 0.2014 � 0.0856 5.8085 0.0182 0.2058 � 0.0822 0.1629 � 0.0689 4.7494 0.0328

d 0.4291 � 0.1654 0.3450 � 0.1263 6.8101 0.0108 0.3493 � 0.1491 0.4291 � 0.1654 5.1985 0.0258

r 0.4394 � 0.1648 0.3629 � 0.1510 5.8233 0.0181 0.3584 � 0.1524 0.4394 � 0.1648 5.3445 0.0239

Lf 0.5935 � 0.1034 0.6063 � 0.0940 0.4147 0.5214 0.5892 � 0.0775 0.5935 � 0.1034 0.0001 0.9907

Th 0.2968 � 0.0517 0.3031 � 0.0470 0.4147 0.5214 0.2946 � 0.0387 0.2968 � 0.0517 0.0001 0.9907

� 2.2465 � 0.2827 2.3164 � 0.2666 1.4271 0.2358 2.3391 � 0.4098 2.2465 � 0.2827 0.7141 0.4011

rdeg � 0.3474 � 0.1338 � 0.3766 � 0.1264 1.6282 0.2056 � 0.3374 � 0.1138 � 0.3474 � 0.1338 0.0033 0.9544

With bold highlight: statistical signi�cant results(p < 0.05).

worth mentioning that the cerebellum receives multiple inputs
from contra- and ipsilateral hemispheres (Suzuki et al., 2012;
Sokolov et al., 2014). In particular, there is evident functional
connectivity among mentalizing areas of the cerebrum (mainly
medial prefrontal cortex, medial parietal cortex, and bilateral
temporo-parietal region) and mentalizing areas of the cerebellum
(mainly the posterior lateral cerebellar lobules) (Van Overwalle
et al., 2015; Van Overwalle and Mariën, 2016).

In terms of DEG and BC metrics, many lobules exhibited
higher values on the left side whereas some other lobules express
right activation related to motor and cognitive functions but to
a smaller extent; i.e., IV, V, VI and parts of HVIIb and HVIII
related to motor function (Stoodley et al., 2012), while Crus I,
Crus II, lobule VI, VIIa and VIIb related to cognitive function
(Bernard et al., 2012). The dominance of DEG and BC on left
lobules was exhibited in both sexes, but the stronger Left VI
hub indication in high-IQ women is a novel �nding and goes in
parallel with other higher-level organizations in this group. The
aforementioned hubs are related to frontal, pre-frontal, temporal,
parietal lobes (lobule VI), frontal gyrus, precuneus, angular gyrus,
interior parietal lobe (Crus I) (Bernard et al., 2012; Koziol et al.,
2014).

Summarizing, the study of low and high-IQ individuals
revealed that both sexes have the characteristics of small-world
networks with di�erences in females indicative of higher neural
e�ciency of the cerebellum, especially in higher-IQ females.

The more e�cient network organization in women re�ects
the di�erent hemispheric organization between genders. The
considerations of three global metrics in women support this
conclusion. Our �ndings in men are in a similar direction
with respect to the IQ level, but appear not signi�cant. The
lower small-worldness in high-IQ females, compared to low-IQ
females and to men counterparts, forms an interesting �nding
of our study. In addition, �ve global metrics (i.e., average
clustering coe�cient, small-worldness, connectivity, diameter
and radius) revealed signi�cant di�erences between low and
high-IQ individuals, as well as within females in low and high-
IQ groups. Three cerebellar lobules (i.e., Left Crus II, Left
X, and Vermis VIII) in low-IQ individuals (both genders)
showed maximum correlation with the median response time,
implying increased e�ort dedicated locally by this population
in cognitive tasks. One known di�erence between men and
women is related to the dominance of the women hemispheres
in language (van Dun et al., 2016). Additional anatomical
di�erences between men and women have been demonstrated in
several studies. In particular, although there is no di�erence in
intelligence ability, the neural substrates of general intelligence
are di�erent between the sexes (Stam, 2004; Malpas et al.,
2016). Moreover, the cerebellar functional connections depend
on the IQ level, which is in accordance to the neural e�ciency
hypothesis. Future studies need to be addressed in order
to clarify such di�erences in cerebellum-cerebral connections.
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The present �ndings combined with future studies could
practically contribute to the examination of disturbances in
cerebellum and/or cerebellar-cerebrum connections with respect
to intelligence in both sexes.
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(blue) and females (red) based on BC (A) and DEG(B). The size of each node
depends on the percentage of high-IQ males and females with the highest BC(C)
and DEG(D) values, respectively.

Supplementary Figure 3 | Regions with the maximum correlation b etween
average DEG or BC measure and median response times (MRTs) for low
and high-IQ males.

Supplementary Figure 4 | Regions with the maximum correlation b etween
average DEG or BC measure and median response times (MRTs) for low
and high-IQ females.

Supplementary Table 1 | Small-world properties information.

Supplementary Table 2 | Mean � SD values based on IQ, for the
normalized degree.

Supplementary Table 3 | Mean � SD values based on IQ, for the
normalized betweenness centrality.

Supplementary Table 4 | Mean � SD values based on IQ, for the
normalized eccentricity.

Supplementary Table 5 | Statistical analysis results based o n IQ for the
main network metrics.

Supplementary Table 6 | Statistical analysis results based o n males IQ for
the main network metrics.

Supplementary Table 7 | Statistical analysis results betwee n high-IQ
males and females for the main network metrics.
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