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During the last years, it has been established that the prafntal and posterior parietal
brain lobes, which are mostly related to intelligence, havenany connections to
cerebellum. However, there is a limited research investigiag cerebellum’s relationship
with cognitive processes. In this study, the network of cerbellum was analyzed in order
to investigate its overall organization in individuals wkitiow and high uid Intelligence
Quotient (IQ). Functional magnetic resonance imaging (fMRdata were selected from
136 subjects in resting-state from the Human Connectome Prigct (HCP) database
and were further separated into two IQ groups composed of 69dw-1Q and 67 high-

IQ subjects. Cerebellum was parcellated into 28 lobules/RI8 (per subject) using a
standard cerebellum anatomical atlas. Thereafter, corralion matrices were constructed
by computing Pearson's correlation coef cients between tte average BOLD time-series
for each pair of ROIs inside the cerebellum. By computing corentional graph metrics,
small-world network properties were veri ed using the weifted clustering coef cient

and the characteristic path length for estimating the tradeoff between segregation and
integration. In addition, a connectivity metric was compued for extracting the average
cost per network. The concept of the Minimum Spanning Tree (®8T) was adopted and
implemented in order to avoid methodological biases in grap comparisons and retain
only the strongest connections per network. Subsequentlysix global and three local
metrics were calculated in order to retrieve useful featuseconcerning the characteristics
of each MST. Moreover, the local metrics of degree and betweaeess centrality were
used to detect hubs, i.e., nodes with high importance. The canputed set of metrics

gave rise to extensive statistical analysis in order to exanme differences between low
and high-1Q groups, as well as between all possible genderdsed group combinations.

Our results reveal that both male and female networks have satl-world properties with
differences in females (especially in higher IQ femalesjlicative of higher neural ef ciency
in cerebellum. There is a trend toward the same direction in am, but without signi cant

differences. Finally, three lobules showed maximum corion with the median response
time in low-1Q individuals, implying that there is an incread effort dedicated locally by
this population in cognitive tasks.

Keywords: cerebellum, fMRI, small-world network, minimum spann ing tree, 1Q, median response time
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INTRODUCTION reason, we constructed functional networks of the cerabell
using rs-fMRI data from individuals with high and low
During the last decades, many neuroimaging studies have begtelligence ratings. Then, we computed the corresponding
performed toward establishing the relationship betweenirbra Minimum Spanning Trees (MSTs) and compared them in order
volume, connectivity structures and intelligence. It isvimis  to identify signi cant local and widespread di erences basecha
now that the human intelligence, which is a general cogaitiv yariety of global and local network metrics. The MST is a widel
mental ability, depends on structural and functional propesti ysed method that is able to preserve only the most important
of the brain, as well as on the interaction among di erent brai connections within a network without introducing threstubl
regions Jung et al., 1999; Duncan et al., 2000; Shaw et al.).200fg|ated bias. As a result, it highlights only those edgesyl a
Findings support the importance of prefrontal cortex and region major role in the information transfer within the network.dihg
of parietal lobes for intelligencé(incan, 1995; Jung and Haier, this strategy, our goal is to examine whether the MST topology
2007; Song et al., 2008; Deary et al., 2010; Ryman et al), 20%@n highlight signi cant di erences among di erent IQ groups
Gray and white-matter characteristics have been used tiyshe  in the cerebellum. The fundamental hypothesis of this stugly i
correlation between structural ndings and intellectuddilities  that the local and global characteristics of the cerebekdwork

(Mechelli et al., 2005; Hulsho Pol etal., 2006; Choi et al0&0  exhibit signi cant di erences which are related to gendecHi.
Malpas et al., 20)pwhile studies associating anatomical and

functional connectivity with intelligence have been aleparted
(Haier et al., 2005; Song et al., 2008; Chiang et al., 2009;rRymIXa/I'A\TERIALS AND METHODS
et al., 2016; Tsvetanov et al., 2))With indicative biomarkers Subjects
involving the total brain volume and the concentration ofeth Our data was collected from the Human Connectome Project
N-acetyl aspartaté\(cDaniel, 2005; Paul et al., 2016 (HCP) database, an open-source database aiming to provige dee
The organized network activity at rest could be viewed agxamination of the human brain connectomea( Essen et al.,
the idle state of the brain functions engaged during di erent2013. The HCP is the result of e orts of co-investigators from
tasks in cognition, also in uenced by personalized chanasties  the University of California, Los Angeles, Martinos Center f
as lifestyle, demographics and psychometric measures ingud Biomedical Imaging at Massachusetts General Hospital (MGH),
intelligence Emith et al., 2015 Recently, functional and Washington University, and the University of Minnesota. The
structural networks have been used to study the correlatiopresent study analyzes rs-fMRI data collected from the HCP
between brain organization and intelligence. These studiedatabase after the HCP S500MEG?2 data release, between the
revealed important correlations of local and widespreadrbrai rst six quarterly releases (Q1-Q6), with few cases alseciztl
properties related to the cognitive functions and intelliger{_i  in Q7 and later. Functional magnetic resonance imaging (fMRI)
et al., 2009; Douw et al., 201Global e ciency of functional data was initially acquired from 492 healthy subjects atwth
brain networks and rich club organization appear to be impottan eyes open with relaxed xation on a projected bright cross-hai
factors in intelligence \(an den Heuvel et al., 2009; Kim on a dark background (and presented in a darkened roovia)(
et al., 2016; Yeo et al., 2Q01®oreover, small-world network Essen et al., 20).3All subjects with psychiatric history, extensive
organization has also been reported as a relevant feature sabstance use and hard alcohol history have been removee sin
intelligence and neural network e ciency\icheloyannis et al., the cerebellum is heavily impacted by alcohol abuse/depasen
2006; Li et al., 20Q9with observed di erences between men (Sullivan et al., 20)Gand there is also evidence to suggest that
and women Douw et al., 201)L More dierences related to the cerebellum is impacted by marijuana as wello¢k et al.,
the organization of brain networks across genders have bee&00; Lopez-Larson et al., 2011; Solowij et al., Rareover,
identi ed in default mode network, revealing local as wedl a additional information related to siblings and twins haveen
widespread connection e ectsA(len et al., 2011; Tomasi and obtained. The population has been restricted to only one member
Volkow, 2012; Szalkai et al., 2015 of a sibling/twin pair so as to overcome shared variance issues
Prefrontal and posterior parietal brain lobes, which are ryost Fluid 1Q scores were obtained per subject prior to scanning.
related to intelligenceRasten et al., 2015; Ryman et al., 2016 Finally, subjects were separated based on their uid IQ scimte
have many connections to cerebelluriogziol et al., 2014; two groups as described in the following section.
Styliadis et al., 20)5 Furthermore, there are many factors .
involved in cognitive processes justifying the examinatmn |Q Groups Formation
various brain areas in relation to IQ aspects, like the basagtin ~ Crystallized intelligence is conceptualized as the product o
implicated in cognitive task processing. Even though it iskno experience, both cultural and educational, in interactioithw
that the cerebellum is actively involved in cognitive presss uid intelligence, which implies the existence of an interec
(Koziol et al., 2014; Styliadis et al., 2)1there is a limited between crystallized and uid intelligence as far as the
research investigating its relationship with 1Q. educational experience is (exclusively) concerrigar¢h et al.,
Considering all the above, the driving question of this2013; Happé, 2013; Schipolowski et al., 30THe HCP database
study concerns the extent to which the cerebellum is relatefirovides uid intelligence measures obtained using a Form-A
to intelligence, in men and women, beyond the cognitiveof an abbreviated version of the Raven's patterns, developed b
processes. More speci cally, we study the network organimatioGur and colleagues3(lker et al., 2012; Barch et al., 2).1dore
in individual groups of di erent gender and 1Q levels. For this speci cally, participants were presented with patterns madefup o
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2 2,3 3,or5 5arrangements of squares, with one of thepipelines were applied{lasser etal., 2013; Van Essen etal., 2013
squares missing. Each participant must pick one of ve responséhe rst volume-based pipeline removes spatial distortions,
choices that best ts the missing square on the pattern. Thkk ta realigns volumes using FSLs FLIRT-based motion correctio
has 24 items and 3 bonus items, arranged in order of incrgasimormalizes the intensity of 4D images to a global mean, register
di culty. However, the task discontinues if the participantalkes data into MNI space and nally masks the data with the nal
5 incorrect responses in a row. Median response times (MRTHrain mask derived from FreeSurfer segmentation, while the
were also collected per subject in order to study associatioth ~ second surface-based pipeline aims at transforming the time
brain measures. series from volume space to CIFTI gray-ordinates standard
In this study, 1Q score is de ned as the number of correctspace with 2 mm average surface vertex and subcortical volume
responses per subject. The score distribution was found tefbe | spacing. Surface data was smoothed using a 2 mm FWHM kernel
skewed (skewne$x 0.49), implying that most of the subjects and ICA was used to isolate independent components from
tend to answer correctly most of the items. In order to de it  the data. The components were then inserted into the FIX tool
low and high-1Q groups, we rst nd the median of the 1Q score to preserve only information relevant components, which were
distribution from all 492 subjects (approximately 16), aslwsl used to reconstruct the de-noised signals. Further detailthe
the lower quartile (approximately 6). The minimum score is 3preprocessing pipelines are provided Blésser et al., 2013; Van
and the maximum score is 24. An |IQ score of 3 is considereéssen et al., 20).3
very low in practice and since only two subjects responded in . )
this range, they were removed from further analysis withouCerebellum's Anatomical Parcellation
a ecting the overall 1Q distribution. We de ne the low-1Q sce  Process
within the interval from 4 to 10 (median minus one quartile), Based on the standard cerebellum anatomical atlas provigied b
whereas the upper IQ interval de nes scores from 22 (mediatthe Spatially Unbiased Infratentorial Template (SUIT) toolbox
plus one quartile) to the maximum score of 24. As a result, th¢Diedrichsen et al., 2009; Diedrichsen and Zotow, J0ike
low-1Q group includes 69 subjects, whereas the high-IQ groucerebellum was parcellated into 28 lobules or regions oféste
is composed of 67 subjects in total. The mid-IQ subjects ar€ROIs), which are classied as motor related (I-IV, V, VI),
discarded, so that our population of interest consists of 188-w cognitive and emotional related (Crus I, Crus II, Vilb, V4l
separated subjects (69 low-1Q/67 high-1Q). More speci callyVllib, IX, X) according to Stoodley and Schmahmann (2009)
there are 25 males and 44 females in the low-1Q group, while 28toodley et al. (2012)E et al. (2014) and Koziol et al.
males and 38 females are involved in the high-1Q group. As fai2014) as shown inFigure 1 In order to avoid in uences of
as the educational experience is concerned, both the lowalQ a intracranial volume di erences among gender and 1Q groups,
the high-1Q subjects had an average of approximately 10 yéars &ll MRI structures were matched to the same model through the
educational experience although 12 low-1Q subjects and B-hig aforementioned parcellation procedure which was based on the
IQ subjects were still respondent in school for degree caursestandard (normalized) SUIT anatomical cerebellum atlas. The
Ages are provided by the HCP database in 4 and 5-year intervalgolume of each ROl was de ned as the number of its voxels
Only 1 subject was older than 36 years (in high-1Q group), 2@nd was calculated from the standard SUIT cerebellum atlas
subjects were between 22 and 25 years old (low/high-1Q) 1589 (Diedrichsen et al., 2009; Diedrichsen and Zotow, J0AS a
subjects were between 26 and 30 years old (low/high-1Q;24/3result, the size of each ROl is common in all subjects, irrésmec
and nally 53 subjects were in the age range between 31 and 35 1Q or gender factors. SUIT's standard cerebellum atlas was
years (low/high-1Q; 28/25). Notice that these age intes\ale based on the hand-segmentation of 20 healthy young parti¢gan
not wide enough to support the consideration of age in uencesand was already registered on the MNI space (Se=irichsen
to intelligence (i et al., 200}t It is worth mentioning that our et al., 2009for further information). In addition, a at surface
population of interest consists of young and healthy adultst th representation of the cerebellum accordingi@drichsen and
underwent several clinical examinations and the large nemb Zotow (2015)is provided inFigure 1, where color coding has
of estimated network parameters are satisfactory for suEsgq been applied based on each lobule's volumetric size. It ioabvi

statistical analyses. from Figure 1 that lobule Crus | is the largest one including
) almost 23% of the total cerebellar volume, whereas lobule X
Resting State fMRI Data is the smallest ROI including almost 1.5% of the total volume.

Resting-state BOLD fMRI data were obtained through a gradientyermis Crus | contains less than 0.005% of the total cerabell
echo EPI sequence from a 3T scanner (91 voluiRE) 720 ms, volume and is excluded from further analysis. The anatoinica
TED 33.1 msFAD 52, FOVD 208 180 mm, slice thickness parcellation of cerebellum was performed for all 136 subjects
D 2.0 mm; 2.0 mm isotropic voxels)/{n Essen et al., 2012, separately, in order to extract the average BOLD signals fhem
2013. Pre-processed BOLD time-series (15 min duration, 1,20femaining 27 ROIs, based on SUIT's standard cerebellum atlas.
frames) were acquired from the selected 136 subjects. HCP

Investigators already performed straightforward pre-pregeg  Graph Analysis

for de-noising the data using Independent Component Analysi$Veighted—Undirected Graphs

(ICA) implemented on FSL's MELODIC toolBeckmann and According to Graph Theory, a grapB can be de ned as a pair
Smith, 200)% HCP investigators have also performed basicV, E) whereV is a set of nodes aridis a set of edge&gijneveld
preprocessing pipelines. More speci cally, two MR functionalet al., 2007; Fornito et al., 2013Weighted and undirected
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Cerebellum parcellation Flatmap representation

% of total voxels

FIGURE 1 | Cerebellum parcellation procedure (coronal view , A: front, B: back) followed by its at surface representation(C). Color coding is based on each
lobule's volumetric size.

graphs were constructed in this study. After the extractidn osmall-worldness index larger than ¥gn den Heuvel et al., 2008,
the BOLD time-series from cerebellum's parcellation progedu 2009; Stam et al., 20)L4This network architecture manages to
(Section Cerebellum's Anatomical Parcellation Proce#isd, achieve e cient information transfer at low wiring cost.

average BOLD time-series were computed per ROl and for every

subject separately. Cerebellum's functional connectivilg then  Minimum Spanning Trees

assessed by computing Pearson's correlation coe cientwden  Toward the characterization of a graph's architecture, itisidoe
each pair of the 27 ROls inside the cerebellum, leading to a 27 convenient to summarize it with a structure that (i) overcesn
27 correlation (adjacency) matrix per subject in both 1Q gesu  biases introduced by comparing networks with di erent number
Negative correlations were discarded from further analfsisir  of edges and (ii) eliminates any disconnected syndromesinvit
et al., 201p The adjacency matrix is in fact a weighted andthe network (for further network-comparison issues §¢em and
undirected graph with 27 nodes, which are designated as k®nte/an Straaten, 2012; van Diessen et al., ROAStraightforward
of mass on ROIs, with a maximum number of 351 edges pedipproach that ful lls these speci cations operates on the cptce

graph. of MSTs, a widespread graph analysis method recently employed
for brain functional-connectivity assessmente(varie et al.,
Small-World Network Topology 2014, 2015a; Van Diessen et al., 2014; Otte et al., 2015; Van

A small-world network architecture\{/atts and Strogatz, 1998 Dellen et al., 2015; Stam et al., 2D1A spanning tree is a
combines high clustering coe cient and small charactedst connected subgraph of the original graph with n-nodes and
path-length. In order to examine the small-world properties ofexactly n 1 edges $tam et al., 2014; Tewarie et al., 2015b
the cerebellum network associated with the 1Q groups, welshouA MST is a spanning tree that manages to preserve only the
compare them to a null model. In order to produce this null edges that minimize the total cost de ned as the sum of the
model, a total of 100 random weighted and undirected graphgveights of the edges. In our study, MSTs were constructed
(edge and weight preserving) were formed for comput@f,,g  using Kruskal's algorithmKruskal, 195% The algorithm begins
and LWang using Brain Connectivity ToolboxRubinov and  with n-disconnected nodes and orders the weights in ascendi
Sporns, 2010 In this study, the weighted versions of clusteringorder. Afterwards, the edge with the smallest weight iscsede
coe cient and characteristic path-length were used in order to connect two nodes, unless the selected edge creates a loop.
compute the small-worldness indestam et al., 2009; Rubinov The above procedure is repeated until a loopless subgraph with
and Sporns, 2010; Otte et al., 2)1as presented iffable L In  n-nodes and n 1 edges is constructed. In order to preserve
fact, a small-world network is characterized by highersggtion the strongest connections within the original network, Iskal's

(W 1) than a random network and almost equal integrationalgorithm is executed so as to minimize the inverse of thaltot
(W 1)with that of a random network and therefore achieves aost and, thus, retain only edges that maximize the total cost
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TABLE 1 | Network descriptors used in this study.

Symbol Interpretation Mathematical expression Implication
G Graph - Weighted and undirected graph
\% Set of vertices - Set of n-nodes
E Set of edges - Set of n*(n 1)/2 maximum edges
Nieaf Leaf nodes - Number of nodes with degree equal to one
Wij Weight b - Weight of the edge connecting nodes and j
t}"’ Number of triangles t}"’ D % (Wijoka|)l:3 Weighted geometric mean of triangles around a node
jk2v
d}?’ Shortest path - Shortest weighted path between nodesi and j
) ) ) P ' )
C}"’ Weighted clustering coef cient C‘i” D K(kl i) Segregation measure that quanti es the local connectednes®f a network
2G5
P
Cw Average weighted clustering coef cient cVvD % C}"’ A global version of the weighted clustering coef cient useddr computing W
i2G
Lw Weighted characteristic path length LW D % ni Integration measure
i2G,j 6D
Gamma WD CW=CW and Ratio of the weighted clustering coef cients between origial and random networks
Lambda WD LAWY ohg Ratio of weighted path lengths between original and random etworks
Small-worldness index Wp W= "l‘:’> Reveals whether a network has an optimal organization or not
conn Connectivity conn D ﬁ wij  Measures the connectedness of a network in terms of network'density, wherepy is
wij2G the number of shortest paths between nodesk and | and p’kI is the number of
i6g shortest paths betweenk and | that pass through nodej
k Degree ki D &j Number of neighbors connected to a node (hub metric)
j2v
=) i
BC Betweenness centrality BC; D g—‘;: Quanti es the importance of a node (hub metric)
k. 12V
k60, k 60, | 60
ECC Eccentricity - Indicates whether a node is central or peripheral in a netwkr
d Diameter - Maximum eccentricity
r Radius - Minimum eccentricity
L¢ Leaf fraction Li D Njgag=n 1 Fraction of nodes with degree equal to one
Th Tree-hierarchy Th D % Quanti es the balance between diameter reduction and overlad prevention
X
Kappa or degree divergence D % Measure of the broadness of the degree distribution
ldeg Degree correlation - Quanti es the in uence of a node's degreedy its neighbors

(Boersma et al., 2013; Tewarie et al., 2015a; Van Dellen, et dle used as hub indicators, since they provide useful infolrnati
2019. The resultis an acyclic subgraph of the original graph thatoncerning the information ow within the network. Finally
manages to preserve only the strongest connections (edges). eccentricity (ECC) is the longest shortest path from a paféicu
MST provides a graph representation that absorbs populationode to any other node in the network. The global MST
characteristics into a compact form and facilitates the diston ~ measures are de ned on the basis of the entire network. Based
of dierent populations through the computation of various on eccentricity's de nition, diameterd) is de ned as the longest
metrics or descriptors. Recall that such MST comparisons asses®rtest path in the whole network, so that small diameteueal

the e ects of only the strongest connections within the ongli  denote better network cohesion, whereas radijss(de ned as
network topology and therefore the MST can be suitably used tthe smallest shortest path in the network. Leaf fractibp) (is

examine the IQ's e ect in cerebellum. the fraction of leaf nodes in the network. Tree-hierarchiy)(is
a metric rst introduced byBoersma et al. (201&s an optimal
Local and Global MST Descriptors tree con guration quanti er. An optimal tree is charactegd by

Three local and six global MST metrics were computed irdiameter reduction and overload prevention (small BC values
order to describe the topological characteristics of each MSwith the value ofTy, approximating 0.5. Kappa § or degree
(Stam and van Straaten, 2012; Otte et al., 2015; Tewarie et divergence is mainly related to the synchronization leetee
20153. The local MST descriptors are computed per nodenodes. Finally, degree correlationdy is computed through the
and normalized with their corresponding maximum values forPearson correlation coe cient of the degrees of pair of vest
appropriate comparisons. These metrics are summarized iconnected by an edg8¢ersma et al., 20).3

Table 1 In particular, degree (DEG) is de ned as the number of

edges connected to a speci ¢ node, while betweenness agntraHub(s) Detection

(BC) de nes the fraction of all shortest paths in the netwohlat  Nodes with high BC and DEG values are characterized asatritic
pass through a speci c node. Consequently, these two metiits c nodes (hubs) and are used to determine the information ow

Frontiers in Human Neuroscience | www.frontiersin.org 5 April 2017 | Volume 11 | Article 189


https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles

Pezoulas et al. Crystallized 1Q, Gender, and Cerebellum

within the network. In order to specify hub nodes for a groupMSTs in Low and High-1Q Subjects
population, we computed the percentage of maximum BC, DE®ISTs were computed for both low and high-IQ subjects, as

values in every ROI, for low/high-IQ males/females. described in Section Minimum Spanning Trees. The average
o _ weighted and undirected graphs and the resulting MSTs are
Statistical Analysis presented inFigure 2 for illustration purposes only, using

Small-world properties were investigated for all weighted anBrainNet viewer Xia et al., 2013 Although the networks in
undirected graphs and, afterwards, the corresponding MSTew and high-IQ populations seem similar, their dierences
were constructed. Subsequently, three local (BC, ECC, DE@)e revealed by the aforementioned metrics that quantify th
and six global (diameter, degree correlation, radius, kafgad, network's topological structure. The average DEG, BC, ECC
fraction, tree hierarchy) metrics were computed in order tovalues for low and high-1Q groups are displayedigure 3and
examine the topological and functional characteristics\a#rg analyzed in more detail iSupplementary Tables 24, alongside
MST. Moreover, several global weighted graph metrics, inowdi with the average MST local metrics for low/high-IQ males and
average weighted clustering coe cient, characteristidydahgth, females.

small-worldness and connectivity, were also examined in ou

procedure. The feature datasets are non-normally distadut Hubs

in general, so that natural log-transformation was applied irHub analysis reveals that lobule Left VI is a critical nodeihgv
order to approximate normal distribution properties, with the the highest BC value in almost 36% of the low-1Q population
addition of a very small constant (& 24) for avoiding zero- and 49% of the high-1Q population, as well as the highest DEG
value transforms. Statistical analysis was performed uging value in 41% of the low-IQ population and 52% of the high-
way unbalanced ANOVA. In total, ve cases were investigatedQ population (Figure 4). Thus, lobule Left VI is responsible
in order to test for dierences between (i) low and high-1Q for “tra ¢’ monitoring in the cerebellum network for both 1Q
groups (low/high-1Q; 69/67), (i) males in low and high-IQ groups. This Left VI's signi cance in information transfes of the
groups (low/high-1Q; 25/29), (iii) females in low and higipl same importance for low and high-1Q subjects, but with a highe
groups (low/high-1Q; 44/38), (iv) males and females in lo@-I manifestation in the high-1Q population. Moreover, lobuledt e
group (males/females; 25/44), (v) males and females in-lgh Crus | and Right VI can also be characterized as hubs, but
group (males/females; 29/38). Alvalues were corrected basedwith a smaller dominance than Left VI. The Left Crus | lobule
on False Discovery Rate (FDR) using the Benjamini-Hochbergctivates more in the low-IQ population, as indicated by DEG
procedure Benjamini and Hochberg, 199@ith the signi cance  and almost equally activated for both groups as indicated @y B

level set to 0.05. Alternatively, the Right VI lobule is more active in the hi¢@-
population, even though to a smaller extent than other lobules.

RESULTS These hub indications have also been validated based on sex
for low and high-1Q male/female populations. Region Left VI

Small-World Network Structure is indeed a critical node for all groups, having the highest BC

Cerebellum manifests a small-world network structure irttbo value in 40% of low-1Q males and 34% of low-IQ females, as
low and high-1Q populations (low-1Q: 1.2644 0.1765; high- well as the highest DEG value in 48% of low-IQ males and
IQ: 1.2126 0.1010), implying that cerebellum network works 36% of low-1Q femalesJupplementary Figure ). In the high-
e ciently at low wiring cost for both 1Q groups. he same |Q population, Left VI demonstrates the highest BC value in 48%
evidence stands for males/females comparisons (low-1Qsnaleof high-IQ males and 50% of high-IQ females, as well as the
1.2334  0.1243; high-IQ males: 1.2287 0.1243; low-IQ highest DEG value in 52% of high-IQ males and 53% of high-
females: 1.2821 0.1994; high-IQ females: 1.20020.0783). 1Q females Supplementary Figure 2 In addition, the Left VI
Low-IQ subjects tend to have higher average clustering cient  hub appears stronger in high-1Q females than high-1Q males.
(1.1939 0.0857) but smaller characteristic path length (0.9548eft Crus | is more activated in low/high-1Q males as indexat
0.0917) than their high-IQ peers (avg. clustering coe cient by both BC and DEG measures whereas the opposite stands for
1.1634 0.0564; characteristic path length: 0.964@®.0689). Right VI which appears to be more activated in low/high-1Q
Moreover, low-1Q males and females have similar charadieris females. In each individual gure we can compare the size and
path lengths (low-IQ males: 0.9523 0.0774; low-IQ females: the number of nodes that participate in hub analysis. The bar
0.9562 0.0997) but females have higher average clusterirgjots (on the lower panel) and the cerebellar anatomical plots
coe cient (low-IQ males: 1.1671 0.0661; low-IQ females: (on the upper panel) encode the same information but o er
1.2092 0.0923). In addition, high-IQ females have higheradditional visual interpretation on the cerebellar surfatais
average clustering coe cient than high-1Q males (high-IGates: ~ providing the anatomical location for each hub. These gures
1.1520 0.0396; high-lQ females: 1.17200.0657), as well as 0 er a clear representation concerning the hub locations fuog t
characteristic path-length (high-1Q males: 0.9458.0878; high-  di erent populations of interest.
1Q females: 0.9781 0.0466). The above results are summarized . .
on Supplementary Table 1 Statistical analysis results on theseCOITelation between DEG, BC, and Median
measures as well as on the rest MST measures are presented IR@sponse Times
on, in Sections Di erences between Low and High-IQ Groupsin order to examine which region interacts the most with
and Di erences between Low and High-1Q Groups Per Gender.the Median Response Time (MRT), we computed Pearson's
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FIGURE 2 | Average weighted and undirected graphs per IQ grou  p (left panel, A : low-1Q and B: high-1Q) and their corresponding MSTs (right paneC: low-1Q
and D: high-1Q). On the latter representation, each node's size geends linearly on its average BC value.

correlation coe cients (per subject) between each ROI's DEGMRT was again Left Xr(D 0.46,0 D 0.002) for the low-1Q group

BC measures (hub indicators) and subjects MRT values bydakirand Vermis Vllib for the high-1Q group { D 0.2,p D 0.24)

into consideration the 1Q factor. Then, the region with the but without any signi cance $upplementary Figure 4Table 2.

highest correlation was selected. In general, all regions that exhibited the highest correladi
Region Left X exhibited the highest positive signi cantbetween DEG/BC and MRT, in the high-IQ group, were non-

correlation between DEG and MRT for the low-IQ groupd  signi cant.

0.42,p D 0.0004) as well as between BC and MRTD(0.43, . .

p D 0.0003). On the other hand, region Vermis Vliib indicated Differences between Low and High-1Q

the highest positive correlation between DEG and MRT for thé€5roups

high-1Q group ¢ D 0.14,p D 0.27) as well as between BCLocal MST metrics did not exhibit any signi cant di erences

and MRT ¢ D 0.19,p D 0.14), without however any statistical between low and high-IQ groups (not shown). On the other

signi cance at all Figure 5 Table 2. hand, signi cant di erences were found in four global metrics
The same procedure was repeated for males and females(®upplementary Table 5 In particular, these dierences are

both IQ groups. In the male population, Left Crus Il exhibiteeth re ected for the metrics of average clustering coe cient (ld®:

highest positive signi cant correlation between DEG and MRT1.1939 0.0857; high-1Q: 1.1634 0.0564) F D 5.8769p D

for the low-1Q group ¢ D 0.57,p D 0.0034), whereas region 0.0167), connectivity (low-1Q: 0.17840.0763; high-1Q: 0.2073

Left VI was the one for the high-1Q groug © 0.21,p D 0.29) 0.0878) ED 5.1324p D 0.0251), diameter (low-1Q: 0.4002

but without any signi cance. Alternatively, the lobule Wwithe  0.1632; high-1Q: 0.3376 0.1215) F D 5.2927p D 0.0230) and

highest positive signi cant correlation between BC and MRTradius (low-1Q: 0.4101 0.1641; high-1Q: 0.3540 0.1400) F D

was Vermis VIlib ¢ D 0.54,p D 0.006) for the low-1Q group 4.3788p D 0.0383).

while Right X was selected for the high-IQ group 0.25,p . .

D 0.2) without again any signi canceS(ipplementary Figure 3 Differences between Low and High-1Q

Table 2. Focusing now on females, region Left X exhibited théGroups Per Gender

highest positive signi cant correlation between DEG and MRTSpecializing the comparisons per gender population, local MST

for the low-1Q group ¢ D 0.47,p D 0.0014). On the other hand, metrics did not exhibit any signi cant dierences between

region Vermis VIIIb was the one with the highest positive (Ron low/high-IQ males or females (not shown). In addition, no

signi cant) correlation for the high-1Q groupr(D 0.23pD 0.18).  signi cant di erences were found on any global metrics betwee

Finally, the region with the highest correlation between &@ low and high-IQ males $upplementary Table 5 However,
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FIGURE 3 | Average DEG, BC, ECC values per ROI for both IQ groups  on the left panel and the corresponding distributions on the r ight panel. DEG and
BC values tend to have similar distributions since the numbeof connections that pass through a speci ¢ node is related wih the overloadness within the network and
vice versa. The number of nodes with the highest BC and DEG wags (hubs) is small. On the other hand, ECC values exhibit a raln more homogeneous diffuse.
Nodes with small eccentricity values are much closer to theenter of the network and are characterized by higher BC and D& values.

signi cant di erences were identi ed between low and higkpl low-1Q females: 1.2092 0.0923) £ D 4.1227,p D 0.0463),
females by ve global metricsTéble 3, speci cally for average connectivity (low-1Q males: 0.2058 0.0822; low-1Q females:
clustering coe cient (low-1Q females: 1.2092 0.0923; high- 0.1629 0.0689) F D 4.7494p D 0.0328), diameter (low-1Q
1Q females: 1.1720 0.0657) F D 4.2866p D 0.0416), small- males: 0.3493 0.1491; low-1Q females: 0.42910.1654) F D
worldness (low-1Q females: 1.28210.1994; high-1Q females: 5.1985p D 0.0258) and radius (low-1Q males: 0.3584.1524;
1.2002 0.0783) F D 4.8060p D 0.0313), connectivity (low- low-IQ females: 0.4394 0.1648) E D 5.3445,p D 0.0239).
1Q females: 0.1629 0.0689; high-1Q females: 0.20140.0856) Finally, one signi cant di erence was found between high-1Q
(F D 5.8085p D 0.0182), diameter (low-1Q females: 0.4291 males and femalesS(pplementary Table Y in characteristic
0.1654; high-1Q: 0.3450 0.1263) F D 6.8101p D 0.0108) and path length (high-1Q males: 0.9454 0.0878; high-1Q females:
radius (low-1Q females: 0.43940.1648; high-1Q females: 0.36290.9781 0.046) £D 4.5376p D 0.0369).

0.1510) FD 5.8233p D 0.0181). In summary, all three local MST metrics (DEG, BC, ECC)

Four global metrics indicated signi cant di erences betwee did not exhibit any signi cant di erences among low/high-1Q
males and females in the low-1Q groupable 3, speci cally for  groups as well as between the four possible gender-based group
average clustering coe cient (low-1Q males: 1.16710.0661; combinations (low/high-1Q males, low/high-1Q femaleswdQ
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FIGURE 4 | Hub locations on cerebellum for low (green) and high (yellow) 1Q groups based on BC (A) and DEG(B). The size of each node depends on the
percentage of low/high-1Q subjects with the highest BQC) and DEG (D) values.

males/females, high-IQ males/females). On the other handnen and women, we employed tools from network theory and
four global metrics (average clustering coe cient, contieity, analyzed fMRI networks at rest. The results were indicative of
diameter and radius) revealed signi cant di erences betwee local and widespread di erences of the functional organizayi
low and high-1Q groups as well as between low-IQ male andevealing di erences in the importance of several cerebellar
female populations. The same conclusion stands for low/highobules and widespread network parameters.

1Q females, with the addition of the small-world metric asliwe The small-world network structure, characterized by high
Characteristic path length was the only metric that exhithite global and local e ciency, is a property of anatomical and
signi cant di erence between high-IQ males and females. Adunctional brain networks. This con guration maximizes éh
far as the low/high-IQ males are concerned, no signi cante ciency and minimizes the costs of information processing.
di erences were identi ed. Our ndings in men are in a similar It implies high clustering of nodes (compatible with segregat
direction with respect to the 1Q level, but appear not signi tan or modular processing) and short path length (compatible with
Both sexes have the characteristics of small-world netsvorldistributed or integrated processing)atts and Strogatz, 1998;
with di erences in females indicative of higher cerebelleural Bassett and Bullmore, 200&nd has been extensively reported
e ciency, especially in higher-IQ females. In relation toeh in EEG, MEG, Tractography and fMRI studieStgém, 2004,
activities of the lobules, the metrics of DEG, BC, and ECUewarie et al., 2014; Stam et al., 20FR&cusing on cerebellum,
showed no di erences between low and high-1Q individuals, orwe con rmed this optimum organization using fMRI at rest
between men and women. The ECC values showed a relati®upplementary Table 1 In females, small-worldness exhibited
homogeneous di use distribution, indicative of a rather cpatt lower values in high-1Q individuals. The higher small-world

organization of the activity of the cerebellar lobules. organization, with higher clustering coe cient and lower pat
length in low-1Q females, is indicative of a more optimum
DISCUSSION AND CONCLUSIONS functionally organized segregation and integration. Imtast,

in high 1Q females, the segregation and integration of the
To assess the hypothesis that the cerebellar functionalmksmt ~ functional networks at rest can be explained as the idle state
rest di er between low and high-1Q individuals and/or between of more e cient reactivity in cognitive tasks, in accordante
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FIGURE 5 | Regions with the maximum correlation between averag e DEG or BC measure and median response times (MRTs) for low and hig h-1Q
groups.

the neural e ciency hypothesis. The same stands for the maleerebellar dominance is observed. An additional ndingated
population but without any signi cance. The neural e ciency to nodes of the cerebellum is that regions Left Crus I, Left X
hypothesis becomes relevant during brain activations, wherand Vermis VIl in low-IQ individuals (both men and women)
more e cient individuals show lower brain activation as the showed maximum correlation with the median response time,
functionally react easier. In agreement to these resutfownd  implying that these lobules become more important only in low-
earlier that highly educated individuals showed less prantn [Q individuals (Table 2. Itis further known that these lobules are
small-world structure than their less educated and lower IQelated to motor and cognitive function&ziol et al., 201y
counterparts licheloyannis et al., 2006 Additional di erences between low and high-IQ women were
It is expected that the intrinsic organization of cerebellarfound in some global parameterSiipplementary Table ¥. The
functions at rest follows the functional organization ofeth network connectivity was higher in high-1Q women than lo-|
cerebrum so similar co-activation with the brain structare women, with smaller diameter and radius valu@alfle 3. These
is expected l(iao et al., 2010; Kelly et al., 201ZThus, ndings show that the network organization in women with
di erences between men and women, as well as betwedrigh-IQ atrestis more e cient. In combination with the ndngs
low and high-IQ individuals, which appear intrinsically in of small-world organization, it may also signify the expressi
the cerebellar network organization at rest, are expected tof neuronal-network e ciency in this sub-population. Male
re ect di erences in cognitive functions in association Wit groups exhibit similar trends, but without any signi cancehe
intelligence. It is interesting that our study supports thesdncreased readiness and e ciency of network organizaties,
assumptions at a statistically signi cant level only in wame well as the lower small-worldness in high-1Q females, comgare
There is a trend toward the same direction in men, but withoutto low-1Q females and to men counterparts, forms an interestin
signi cant di erences between low and high-1Q individualshis ~ nding of our study. According to the intrinsic cerebellar
di erentiation between men and women is indicative of genderconnections, these ndings could be related to the fact that
di erences in cognitive functions which are associated withthe cerebellar-cerebral coordination di ers among indiuals,
intelligence. In addition, the lobules with the highest DE&BC  with known language dominance in women, which is more
values can be related mainly with cognitive functions, veleeleft e ective in highly intelligent individuals. At this point, iis
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TABLE 2 | ROI(s) with the maximum correlation coef cient betwe

en MRT and DEG or BC measure for both 1Q groups and gender.

Group DEG BC
Maximum correlation coef cient p ROI Maximum correlation coef cient p ROI
Low IQ Total 0.42 0.0004 Left X 0.43 0.0003 Left X
Males 0.57 0.0034 Left Crus Il 0.54 0.006 Vermis VIlib
Females 0.47 0.0014 Left X 0.46 0.002 Left X
High IQ Total 0.14 0.27 Vermis VIlib 0.19 0.14 Vermis Vllib
Males 0.21 0.29 Left VI 0.25 0.2 Right X
Females 0.23 0.18 Vermis VIlib 0.2 0.24 Vermis Vllib
With bold highlight: statistical signi cant resultgp < 0.05).
TABLE 3 | Statistical analysis results per female IQ group and | ow IQ group for the main network metrics.
Metric Low-IQ females High-1Q females F P Low-1Q males Low-IQ females F P
Mean SD Mean SD Mean SD Mean SD
Cw 1.2092 0.0923 1.1720 0.0657 4.2866 0.0416 1.1671 0.0661 1.2092 0.0923 4.1227 0.0463
Lw 0.9562 0.0997 0.9781 0.0466 2.1312 0.1482 0.9523 0.0774 0.9562 0.0997 0.0055 0.9412
w 1.2821 0.1994 1.2002 0.0783 4.8060 0.0313 1.2334 0.1243 1.2821 0.1994 0.9492 0.3334
conn 0.1629  0.0689 0.2014 0.0856 5.8085 0.0182 0.2058 0.0822 0.1629  0.0689 4.7494 0.0328
d 0.4291 0.1654 0.3450 0.1263 6.8101 0.0108 0.3493 0.1491 0.4291 0.1654 5.1985 0.0258
r 0.4394 0.1648 0.3629 0.1510 5.8233 0.0181 0.3584 0.1524 0.4394 0.1648 5.3445 0.0239
L¢ 0.5935 0.1034 0.6063  0.0940 0.4147 0.5214 0.5892 0.0775 0.5935 0.1034 0.0001 0.9907
Th 0.2968 0.0517 0.3031  0.0470 0.4147 0.5214 0.2946  0.0387 0.2968 0.0517 0.0001 0.9907
2.2465 0.2827 2.3164 0.2666 1.4271 0.2358 2.3391 0.4098 2.2465 0.2827 0.7141 0.4011
ldeg 0.3474 0.1338 0.3766  0.1264 1.6282 0.2056 0.3374 0.1138 0.3474 0.1338 0.0033 0.9544

With bold highlight: statistical signi cant resultgp < 0.05).

worth mentioning that the cerebellum receives multiple input The more e cient network organization in women re ects
from contra- and ipsilateral hemisphereSuzuki et al., 2012; the di erent hemispheric organization between genders. The
Sokolov et al., 20)4In particular, there is evident functional considerations of three global metrics in women support this
connectivity among mentalizing areas of the cerebrum (riyain conclusion. Our ndings in men are in a similar direction
medial prefrontal cortex, medial parietal cortex, and bitate with respect to the 1Q level, but appear not signi cant. The

temporo-parietal region) and mentalizing areas of the cefetre
(mainly the posterior lateral cerebellar lobulesk( Overwalle
etal., 2015; Van Overwalle and Marién, 216

lower small-worldness in high-1Q females, compared to l&yv-I
females and to men counterparts, forms an interesting nding
of our study. In addition, ve global metrics (i.e., average

In terms of DEG and BC metrics, many lobules exhibitedclustering coe cient, small-worldness, connectivity, diater
higher values on the left side whereas some other lobulegsspr and radius) revealed signi cant di erences between low and

right activation related to motor and cognitive functionsitito
a smaller extent; i.e., IV, V, VI and parts of HVIIb and HVIII
related to motor function &toodley et al., 20)2while Crus I,
Crus 1, lobule VI, Vlla and VIlIb related to cognitive funcin

high-1Q individuals, as well as within females in low and high-
IQ groups. Three cerebellar lobules (i.e., Left Crus IlI, Left
X, and Vermis VIII) in low-1Q individuals (both genders)

showed maximum correlation with the median response time,

(Bernard et al., 20)2The dominance of DEG and BC on left implying increased e ort dedicated locally by this population
lobules was exhibited in both sexes, but the stronger Left Mh cognitive tasks. One known dierence between men and
hub indication in high-IQ women is a novel nding and goes in women is related to the dominance of the women hemispheres

parallel with other higher-level organizations in this gpuhe
aforementioned hubs are related to frontal, pre-frontahporal,
parietal lobes (lobule V1), frontal gyrus, precuneus, anggyaus,

interior parietal lobe (Crus I)Bernard et al., 2012; Koziol et al.,

2019.

in language (an Dun et al., 2016 Additional anatomical

di erences between men and women have been demonstrated in
several studies. In particular, although there is no di erenc
intelligence ability, the neural substrates of generatlligence

are dierent between the sexesstem, 2004; Malpas et al.,

Summarizing, the study of low and high-1Q individuals 2016. Moreover, the cerebellar functional connections depend

revealed that both sexes have the characteristics of svoall
networks with di erences in females indicative of higher nalu

on the IQ level, which is in accordance to the neural e ciency
hypothesis. Future studies need to be addressed in order

e ciency of the cerebellum, especially in higher-IQ femalesto clarify such dierences in cerebellum-cerebral conneas.
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The present ndings combined with future studies could SUPPLEMENTARY MATERIAL

practically contribute to the examination of disturbances i
cerebellum and/or cerebellar-cerebrum connections wétpect
to intelligence in both sexes.
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